Exercise 15

What is the geometric relation between the vectors \mathbf{v} and \mathbf{w} if $\mathbf{v} \cdot \mathbf{w}=-\|\mathbf{v}\|\|\mathbf{w}\|$?

Solution

Note that the dot product of two vectors, \mathbf{v} and \mathbf{w}, is defined as

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

where θ is the angle between the vectors. If $\mathbf{v} \cdot \mathbf{w}=-\|\mathbf{v}\|\|\mathbf{w}\|$, then

$$
\cos \theta=-1,
$$

which means $\theta=\pi$. The two vectors therefore have the same direction but opposite sense; that is, they are antiparallel.

